pypbr.models.CookTorranceBRDF
- class pypbr.models.CookTorranceBRDF(light_type: str = 'point', override_device: device = None)[source]
Bases:
BRDFModelImplements the Cook-Torrance BRDF model. Supports both directional and point light sources.
Example
brdf = CookTorranceBRDF(light_type="point") # Define the view direction, light direction, and light intensity view_dir = torch.tensor([0.0, 0.0, 1.0]) # Viewing straight on light_dir = torch.tensor([0.1, 0.1, 1.0]) # Light coming from slightly top right light_intensity = torch.tensor([1.0, 1.0, 1.0]) # White light light_size = 1.0 # Evaluate the BRDF to get the reflected color color = brdf(material, view_dir, light_dir, light_intensity, light_size)- __init__(light_type: str = 'point', override_device: device = None)[source]
Initialize the Cook-Torrance BRDF.
- Parameters:
light_type (str) – Type of light source (‘directional’ or ‘point’).
Methods
__init__([light_type, override_device])Initialize the Cook-Torrance BRDF.
add_module(name, module)Add a child module to the current module.
apply(fn)Apply
fnrecursively to every submodule (as returned by.children()) as well as self.bfloat16()Casts all floating point parameters and buffers to
bfloat16datatype.buffers([recurse])Return an iterator over module buffers.
children()Return an iterator over immediate children modules.
compile(*args, **kwargs)Compile this Module's forward using
torch.compile().cpu()Move all model parameters and buffers to the CPU.
cuda([device])Move all model parameters and buffers to the GPU.
double()Casts all floating point parameters and buffers to
doubledatatype.eval()Set the module in evaluation mode.
extra_repr()Set the extra representation of the module.
float()Casts all floating point parameters and buffers to
floatdatatype.forward(material, view_dir, ...[, ...])Evaluate the Cook-Torrance BRDF for the given directions.
fresnel_schlick(cos_theta, F0)Compute the Fresnel term using Schlick's approximation.
geometry_schlick_ggx(NdotX, roughness)Compute the geometry function for a single direction using Schlick-GGX.
geometry_smith(normal, view_dir_map, ...)Compute the geometry function using Smith's method.
get_buffer(target)Return the buffer given by
targetif it exists, otherwise throw an error.get_extra_state()Return any extra state to include in the module's state_dict.
get_parameter(target)Return the parameter given by
targetif it exists, otherwise throw an error.get_submodule(target)Return the submodule given by
targetif it exists, otherwise throw an error.half()Casts all floating point parameters and buffers to
halfdatatype.ipu([device])Move all model parameters and buffers to the IPU.
load_state_dict(state_dict[, strict, assign])Copy parameters and buffers from
state_dictinto this module and its descendants.modules()Return an iterator over all modules in the network.
named_buffers([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
named_children()Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
normal_distribution_ggx(normal, half_vector, ...)Compute the Normal Distribution Function using the GGX (Trowbridge-Reitz) model.
parameters([recurse])Return an iterator over module parameters.
register_backward_hook(hook)Register a backward hook on the module.
register_buffer(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook(hook[, prepend])Register a backward pre-hook on the module.
register_load_state_dict_post_hook(hook)Register a post hook to be run after module's
load_state_dictis called.register_module(name, module)Alias for
add_module().register_parameter(name, param)Add a parameter to the module.
register_state_dict_pre_hook(hook)Register a pre-hook for the
state_dict()method.requires_grad_([requires_grad])Change if autograd should record operations on parameters in this module.
set_extra_state(state)Set extra state contained in the loaded state_dict.
share_memory()See
torch.Tensor.share_memory_().state_dict(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train([mode])Set the module in training mode.
type(dst_type)Casts all parameters and buffers to
dst_type.xpu([device])Move all model parameters and buffers to the XPU.
zero_grad([set_to_none])Reset gradients of all model parameters.
Attributes
T_destinationcall_super_initdump_patchestraining- forward(material: MaterialBase, view_dir: Tensor, light_dir_or_position: Tensor, light_intensity: Tensor, light_size: float | None = None, return_srgb: bool = True) Tensor[source]
Evaluate the Cook-Torrance BRDF for the given directions.
- Parameters:
material (MaterialBase) – Material properties (can be BasecolorMetallicMaterial or DiffuseSpecularMaterial).
view_dir (Tensor) – View direction vector, shape (3,).
light_dir_or_position (Tensor) – Light direction vector (for directional light, shape (3,)) or light position vector (for point light, shape (3,)).
light_intensity (Tensor) – Light intensity, shape (3,).
light_size (float) – Size of the light source (for point light only).
return_srgb (bool) – Whether to return the color in sRGB space.
- Returns:
The reflected color at each point, shape (3, H, W).
- Return type:
Tensor
- fresnel_schlick(cos_theta: Tensor, F0: Tensor) Tensor[source]
Compute the Fresnel term using Schlick’s approximation.
- Parameters:
cos_theta (Tensor) – Cosine of the angle between view and half-vector, shape (1, H, W).
F0 (Tensor) – Base reflectivity at normal incidence, shape (3, H, W).
- Returns:
Fresnel term, shape (3, H, W).
- Return type:
Tensor
- geometry_schlick_ggx(NdotX: Tensor, roughness: Tensor) Tensor[source]
Compute the geometry function for a single direction using Schlick-GGX.
- Parameters:
NdotX (Tensor) – Cosine of angle between normal and direction, shape (1, H, W).
roughness (Tensor) – Surface roughness, shape (1, H, W).
- Returns:
Geometry term for one direction, shape (1, H, W).
- Return type:
Tensor
- geometry_smith(normal: Tensor, view_dir_map: Tensor, light_dir_map: Tensor, roughness: Tensor) Tensor[source]
Compute the geometry function using Smith’s method.
- Parameters:
normal (Tensor) – Surface normals (N), shape (3, H, W).
view_dir_map (Tensor) – View directions (V), shape (3, H, W).
light_dir_map (Tensor) – Light directions (L), shape (3, H, W).
roughness (Tensor) – Surface roughness, shape (1, H, W).
- Returns:
Geometry term, shape (1, H, W).
- Return type:
Tensor
- normal_distribution_ggx(normal: Tensor, half_vector: Tensor, roughness: Tensor) Tensor[source]
Compute the Normal Distribution Function using the GGX (Trowbridge-Reitz) model.
The GGX NDF is used to model the distribution of microfacets on a surface.
- Parameters:
normal (Tensor) – Surface normals (N), shape (3, H, W).
half_vector (Tensor) – Half vectors (H), shape (3, H, W).
roughness (Tensor) – Surface roughness, shape (1, H, W).
- Returns:
NDF term, shape (1, H, W).
- Return type:
Tensor
References
Walter, B., Marschner, S.R., Li, H., and Kautz, J. (2007). Microfacet Models for Refraction through Rough Surfaces. Journal of Computer Graphics Techniques (JCGT).