Advanced Use: Custom Dataset and Rendering Loss
In this advanced tutorial, we will cover how to integrate the PyPBR library into a dataset class and use it for training a deep learning model with a rendering loss. Specifically, we’ll look at how to:
Create a Custom Dataset: Use PyPBR to create a materials dataset class compatible with PyTorch.
Rendering Loss Using BRDF: Utilize the Cook-Torrance BRDF evaluation to compute a rendering loss.
By the end of this tutorial, you will understand how to leverage PyPBR’s BRDF evaluation to create a more photorealistic loss for training deep learning models.
Creating a Custom Dataset with PyPBR
The PyPBR library can be easily integrated into a PyTorch dataset to facilitate the loading and handling of PBR materials.
Below is a custom PyTorch dataset class that loads PBR materials from folders.
import os
import torch
from torch.utils.data import Dataset
from pypbr.material import load_material_from_folder
class PBRMaterialDataset(Dataset):
def __init__(self, root_dir, color_space='srgb', workflow='metallic', resolution=(256, 256)):
"""
Initialize the dataset by specifying the root directory containing material folders.
Args:
root_dir (str): The root directory containing the material folders.
color_space (str): Color space for the albedo map, either 'srgb' or 'linear'. Defaults to 'srgb'.
workflow (str): Preferred workflow, either 'metallic' or 'specular'. Defaults to 'metallic'.
resolution (tuple): Desired resolution for the texture maps. Defaults to (256, 256).
"""
self.root_dir = root_dir
self.material_dirs = [os.path.join(root_dir, d) for d in os.listdir(root_dir) if os.path.isdir(os.path.join(root_dir, d))]
self.color_space = color_space
self.workflow = workflow
self.resolution = resolution
def __len__(self):
return len(self.material_dirs)
def __getitem__(self, idx):
folder_path = self.material_dirs[idx]
# Load the material from the folder
is_srgb = self.color_space == 'srgb'
material = load_material_from_folder(folder_path, preferred_workflow=self.workflow, is_srgb=is_srgb)
# Resize the material to the desired resolution
material.resize(self.resolution)
return material
The PBRMaterialDataset allows for easy loading of materials from a directory. You can now use this dataset with standard PyTorch data loaders to provide batches of PBR materials during training.
Rendering Loss Using BRDF
To use PyPBR for a rendering loss, we can evaluate the BRDF of the predicted material properties and compare it with a reference rendering. This type of loss encourages the network to learn physically plausible material properties.
In this tutorial, we will use the CookTorranceBRDF model to evaluate both a predicted material and a ground truth material, and compute a rendering loss based on the difference between the two.
import torch
import torch.nn as nn
from pypbr.models import CookTorranceBRDF
class RenderingLoss(nn.Module):
def __init__(self, light_type='point', view_dir=torch.tensor([0.0, 0.0, 1.0]), light_dir=torch.tensor([0.1, 0.1, 1.0]), light_intensity=torch.tensor([1.0, 1.0, 1.0])):
"""
Initialize the rendering loss module.
Args:
light_type (str): The type of light ('point' or 'directional'). Defaults to 'point'.
view_dir (torch.Tensor): The view direction vector. Defaults to viewing straight on.
light_dir (torch.Tensor): The light direction vector. Defaults to light from slightly top right.
light_intensity (torch.Tensor): The light intensity. Defaults to white light.
"""
super(RenderingLoss, self).__init__()
self.brdf = CookTorranceBRDF(light_type=light_type)
self.view_dir = view_dir
self.light_dir = light_dir
self.light_intensity = light_intensity
def forward(self, predicted_material, ground_truth_material):
"""
Forward pass to compute the rendering loss.
Args:
predicted_material: Predicted material properties.
ground_truth_material: Ground truth material properties.
Returns:
torch.Tensor: The computed rendering loss.
"""
# Compute rendered color for predicted and ground truth materials
rendered_pred = self.brdf(predicted_material, self.view_dir, self.light_dir, self.light_intensity)
rendered_gt = self.brdf(ground_truth_material, self.view_dir, self.light_dir, self.light_intensity)
# Compute L2 loss between the rendered outputs
loss = nn.MSELoss()(rendered_pred, rendered_gt)
return loss
Usage Example
Below is an example of how to use the PBRMaterialDataset and RenderingLoss in a typical training loop.
from torch.utils.data import DataLoader
# Initialize dataset and dataloader
root_dir = "path/to/materials_root"
dataset = PBRMaterialDataset(root_dir, color_space='srgb', workflow='metallic', resolution=(256, 256))
dataloader = DataLoader(dataset, batch_size=4, shuffle=True)
# Initialize the rendering loss
rendering_loss = RenderingLoss(light_type='point')
# Example training loop
for batch in dataloader:
predicted_material = batch # Here, replace this with your model's predicted material output
ground_truth_material = batch # Assuming the batch itself is the ground truth material for this example
# Compute rendering loss
loss = rendering_loss(predicted_material, ground_truth_material)
# Print the loss
print("Rendering Loss:", loss.item())
# Perform backpropagation and optimization steps here
...
Summary
In this tutorial, we covered:
Dataset Integration: How to load materials into a PyTorch dataset using PyPBR.
Rendering Loss: How to create a custom rendering loss using BRDF evaluation.
By leveraging PyPBR, you can incorporate physically-based rendering into your deep learning workflows, helping models learn realistic material properties and improving the visual quality of results.